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SUMMARY

Numerical uncertainty analysis has been performed for the turbulent �ow past a backward-facing step.
The analysis is based on calculations on seven non-rectangular, but structured, grid sets that were
provided by the organizers of the 2004 Lisbon Workshop (Proceedings of the Workshop on CFD
Uncertainty Analysis, Lisbon, 21–22 October 2004). The calculations were performed by using a com-
mercial code, namely, FLUENT with the Spalart–Allmaras one-equation turbulence model. The present
study constitutes a calculation veri�cation process: a set of partial di�erential equations are solved
on gradually re�ned grid sets, the selected quantities are extrapolated, and then the overall numerical
uncertainty in selected quantities is estimated by various methods. Some new ideas are presented for es-
timating the coe�cient of variation, which is related to standard deviation (or standard error of estimate
in case of the least squares method).
The major problem that stands out in extrapolation is the cases of non-monotonic convergence. For

such cases some alternative methods are proposed, and the results are compared to assess these methods.
Copyright ? 2005 John Wiley & Sons, Ltd.
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BACKGROUND

The numerical uncertainty assessment is necessary for computational �uid dynamics (CFD)
to become a reliable design tool. Many of the approaches proposed in the literature for
quanti�cation of the numerical uncertainty are based on grid re�nement in conjunction with
Richardson extrapolation (RE) [1–3]. RE usually uses calculations on three grids to determine
the extrapolated value of a dependent variable to zero grid size, either using the theoretical
order of the scheme (on at least two grid levels), or via the apparent or observed order which

∗Correspondence to: Ismail B. Celik, Mechanical and Aerospace Engineering Department, West Virginia University,
309 Eng. Sci. Bd., P.O. Box 6106, Morgantown, WV 26506, U.S.A.

†E-mail: ismail.celik@mail.wvu.edu
‡E-mail: jli1@mix.wvu.edu

Received 30 December 2004
Revised 20 May 2005

Copyright ? 2005 John Wiley & Sons, Ltd. Accepted 24 May 2005



1016 I. B. CELIK AND J. LI

is calculated as part of the solution; in the latter case at least three sets of calculations are
needed on signi�cantly di�erent grid levels. The pros and cons of this method has been the
topic of many recent publications [3–11]. In spite of being a very useful tool for quantifying
discretization errors in CFD, there still remain major problems that need to be addressed to
advance the level of con�dence that could be trusted upon RE [12, 13].
Alternative methods are proposed due to the di�culties of RE. For instance, the least

squares approach is proposed [12] to avoid the scattering of the data although it needs more
than three grids. The approximate error spline (AES) method [13] is proposed to remedy the
non-monotonic convergence problems.
This paper presents our �ndings from a careful study of numerical uncertainty for one

of the test cases proposed by E�ca and Hoekstra [14]. This is the classical case of a tur-
bulent �ow over a backward-facing step. Our study deals with the following questions: (1)
Which extrapolation method is suitable for non-monotonic convergence? (2) Which uncertainty
estimation method is a better indicator for grid convergence? (3) How can the error estimates
calculated from extrapolated values be translated into a quantitative numerical uncertainty?

METHODS

With four or more grids, we can use the least squares method for extrapolation of computed
quantities [12]. With three grids, the following methods: power law method, cubic spline
method, polynomial method, and AES method are used in this study (see Appendix A for
a brief description of these methods; see also Reference [13] for more details). The linear
extrapolation is used for two �nest grids. We use the non-linear least squares extrapolation
(see Appendix A) with four and seven grids. In these cases the mean, �, is simply taken as
the extrapolated value, �ext. Once �ext is known the numerical uncertainty is calculated using
the �ne grid convergence index (GCI) proposed by Roache [3] which can be written as

GCI=1:25
∣∣∣∣�ext − �f�f

∣∣∣∣ (1)

The extrapolated relative error (ERE) can also be used to quantify the uncertainty [6] which
is de�ned as

ERE=
∣∣∣∣�ext − �f�ext

∣∣∣∣ (2)

Celik and Karatekin called it ‘the true relative error’, but as a result of communication with
Roache [15] we prefer to call it the ‘extrapolated relative error’.
When we apply the least squares method with more than three grids, the scatter in the data

indicates a certain amount of uncertainty for the extrapolated value, which could be estimated
by calculating the coe�cient of variation. In this study, the coe�cient of variation (CV) for
the least squares method (using at least four grids) is computed from

�2r =
n∑
i=1
[�i − (�ext + �hpi )]2 (3a)

��=h =
√
�2r =n (3b)
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CV =
∣∣∣∣��=h�ext

∣∣∣∣ (3c)

ERECV1 = ERE + CV (3d)

For su�ciently large samples, (3b) should have the factor of n − np where np=3 (the
number of parameters involved in the regression curve). However for small samples, e.g.
n¡10, this formula has too much bias, hence the factor n in Equation (3b). �ext is equivalent
to �(0) in Appendix A and it represents the mean in classical statistics notation. �2r is the sum
of the squares of the errors between the non-linear regression curve and the data points. ��=h
is the standard error of the �t. The CV is the relative error of estimate. ERECV1 in Equation
(3d) represents the total uncertainty which accounts for both the relative error based on the
extrapolated value and the uncertainty induced by the scatter of the data. The GCI already
involves a safety factor which should account for the uncertainty in the outcome, hence we
did not add CV to GCI, contrary to what has been done by E�ca and Hoekstra [16].
For those methods requiring three grids, the CV is calculated from the sampling results

with four triplets; Four grids are denoted by G1, G2, G3, and G4, the sample size n=4, and
the triplets are (G1,G2,G3); (G1,G3,G4); (G1,G2,G4) and (G2,G3,G4). Using these samples
the mean �ext is given by

�ext =
n∑
i=1
�ext; i=n (4a)

and the population standard deviation is given by

�=

√
n∑
i=1
(�ext; i − �ext)2=(n− 1) (4b)

The CV is computed from

CVext =
�

|�ext|
(4c)

CVext indicates the amount of scatter in the extrapolated values, hence we de�ne

ERECV2 =ERE + CVext (4d)

Combining di�erent methods of extrapolation, larger samples can be obtained to improve
the statistics.

CASE-SPECIFIC ISSUES

The case investigated in this study is a 2D turbulent backward-facing step �ow (ERCOFTAC
database [17], case 30, see also References [14, 16]). The Reynolds number is 50 000 based
on the step height (H) and the maximum inlet velocity. The Expansion ratio is 9/8. Two
sets of grids are used for the purpose of this study. The �rst set has seven grids which are
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similar, structured, and non-rectangular grids. The second set has four rectangular grids which
are generated by doubling the grid. An example of the �rst set of grids is shown in Figure 1.
These grids are re�ned from 101∗101 to 241∗241. The maximum y+ for the coarsest grid at
the south wall is 1.15. The average grid size is calculated from h=

√
A=nc where A is the area

of the computational domain, and nc is the number of the cells. The grid re�nement ratios
for all these grids are in the range of 1.1–1.2 as listed in the �rst two columns of Table I.
These grids are used to estimate the numerical uncertainty with the least squares method.
In this study we also selected some triplets to assess those extrapolation methods which are
applicable for a set of three grids. For these triplets, the re�nement ratios are in the range of
1.29–1.43 which is generally believed to be more appropriate for a grid convergence study
with a set of three grids. A set of four grids listed in the last two columns of Table I are also
used to estimate the uncertainty with the least squares method and the results are compared
to the ones that involved all seven grids.
Spalart–Allmaras’ one-equation turbulence model is used to solve for the �ow �eld with

the commercial code FLUENT 6.0 [18]. The convection terms and the di�usion terms are
discretized with the second-order upwinding scheme and the central di�erencing scheme, re-
spectively. The inlet velocity is obtained with an empirical multi-layer approach [14, 16, 19].
At the outlet, the gauge pressure and the derivatives of other quantities are set to zero. The
no-slip wall boundary condition is used at the walls. If the mesh is �ne enough to resolve the
laminar sublayer, the shear stress at walls is obtained from laminar stress–strain relationship,
i.e. u=u�=�u�y=�. If the mesh is too coarse (i.e. y+ is larger than 11), it is assumed that

Figure 1. An example of grids used in this study.

Table I. Grid re�nement ratios.

Grids Ratio Grids Ratio Grids Ratio Grids Ratio

101 ∗ 101 101 ∗ 101 141 ∗ 141 101 ∗ 101
121 ∗ 121 1.20 141 ∗ 141 1.40 181 ∗ 181 1.29 141 ∗ 141 1.40
141 ∗ 141 1.17 201 ∗ 201 1.43 241 ∗ 241 1.33 181 ∗ 181 1.29
161 ∗ 161 1.14 241 ∗ 241 1.33
181 ∗ 181 1.13
201 ∗ 201 1.11
241 ∗ 241 1.20
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the centroid of the wall-adjacent cell falls within the logarithmic region of the boundary layer,
and the law-of-the-wall is employed, i.e. u=u�= ln(E�u�y=�)=�, where u is the velocity parallel
to the wall, u� the shear velocity, y the distance from the wall, � the von K�arm�an constant
(0.4187), and E=9:793. It should be noted that the �rst set of seven grids does not require
the law of the wall as a boundary condition. Hence we assume none of the grids required the
use of the log-law.
All the data shown in this paper are obtained with the second-order upwinding scheme in

the solver and the bilinear interpolation method for postprocessing.
Double precision is used for all the calculations so that the round-o� errors are expected

to be negligible at least for the grid resolution used in this study. The iterations were stopped
whenever the scaled residual for continuity equation approached an asymptotic value. The
scaled residual is de�ned as

R�=

∑
cellsp

∑
nb |(anb�nb + b− ap�p)|∑

cellsp |ap�p| (5)

Here ap is the centre coe�cient of the discretization equation, anb are the in�uence coe�-
cients for the neighbouring cells, and b is the contribution of the source term. Correspondingly,
�p is the value for a generic variable at the centre cell and �nb represent the ones at the
centre of the neighbouring cells. In this study, the scaled residual is observed to reach a level
of about 1E-12–1E-15, which varies with the grids used.

RESULTS AND DISCUSSION

Grid convergence

First the convergence patterns are shown (Figure 2) with grid re�nement for the calculated
separation point (location where U changes sign from positive to negative) and reattachment
point (location where U changes from negative to positive) as well as the velocities at the
points (0; 1:1) and (4; 0:1). The separation and reattachment locations were determined using
linear interpolation and cubic spline interpolation. The results did not change more than 1%.
We also used the criteria of zero shear stress for determining the separation and reattachment
points, the results di�ers less than 0.5% compared to zero velocity results. Two types of grid
convergence are identi�ed, namely—monotonic and non-monotonic. We de�ne a convergence
is non-monotonic whenever the product (�i − �i−1)(�i+1 − �i) is less than zero for any grid
index i. It is also seen that the results are far from being grid independent. These �gures
illustrate that in applications of RE the assumption of being in the asymptotic range is still a
problem even with seven grids with reasonable grid re�nement at every level.
To emphasize the dependence of grid convergence patterns on the type and the quality

of grid distribution we included Figure 3. It is seen that not only the convergence patterns
are di�erent but the asymptotic values are too with an uncertainty of about 3.5%. Theo-
retically, one would expect both have to go to the same extrapolated value as h tends to
zero, but this is not the case. However, given that this di�erence has the same order as the
uncertainty calculated in u-velocity at other points (see Tables II, IV and VII) one should not
be discouraged too much.
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Figure 2. The reattachment and separation lengths, and velocities at (0; 1:1) and (4; 0:1) calculated with
di�erent grids (h0 corresponds to the coarsest grid): (a) ‘apparent’ monotonic convergence; (b) ‘appar-
ent’ monotonic convergence; (c) ‘apparent’ monotonic convergence; (d) non-monotonic convergence;

(e) non-monotonic convergence; and (f) ‘apparent’ monotonic convergence.

Least squares extrapolation

The results in Tables II and III are calculated with the least squares method using all seven
grids. Uncertainty is estimated by using the GCI from Equation (1).
The results in Tables IV and V are calculated using the least squares method with four

grids: 101× 101; 141× 141; 181× 181; 241× 241. This is done because of two reasons: (1)
calculations with seven grids are too expensive; (2) the grid re�nement ratio with the set of
seven is too small. Here also, uncertainty is estimated by using the GCI.
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Streamwise velocity at (1.01,0.125) with different sets of grids
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Figure 3. Comparison of rectangular and skewed grid convergence.

Table II. Local �ow quantities extrapolated with seven grids.

Variable x=0; y=1:1H x=H; y=0:1H x=4H; y=0:1H

U 6.619E-01 −1.952E-01 −1.442E-01
Uncertainty U 1.7E-03 1.51E-03 2.2E-02
Observed p 1.92 3.00 3.40
V 2.208E-02 1.426E-02 −9.289E-03
Uncertainty V 1.5E-01 7.15E-02 3.1E-02
Observed p 3.23 2.83 3.06
Cp −1.727E-01 −2.421E-01 −1.164E-01
Uncertainty Cp 1.1E-01 2.26E-03 9.7E-03
Observed p 1.19 2.95 1.33
�t 1.439E-03 1.192E-03 2.177E-03
Uncertainty �t 3.9E-04 3.31E-03 4.3E-03
Observed p 3.07 3.06 3.07

Reattachment point: 6.203, uncertainty: 4.6E-2, observed p: 0.86.

Table III. Integral quantities extrapolated with seven grids.

Flow quantity Predicted Uncertainty Observed p

Friction resistance bottom wall (N) 2.640E-02 2.1E-03 3.07
Friction resistance top wall (N) 4.882E-02 2.0E-04 3.06
Pressure resistance bottom wall (N) 1.115E-01 5.6E-03 2.98

The extrapolated quantities and the uncertainties predicted with four grids are very close
to the ones predicted with seven grids. Since four grids are the minimum number of grids
the least squares approach requires, this seems to be adequate for uncertainty analysis. Of the
uncertainties at three di�erent locations (0; 1), (1; 0:1), and (4; 0:1), the ones at (1; 0:1) are the
largest which may be caused by the rapidly changing �ow �eld in that region. The observed
p varies in the range 0.86–3.40. The majority of the cases considered yielded an observed
order to be in the range 2.0–3.0 which is encouraging knowing that the nominal theoretical
order of the scheme used is 2.0.
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Table IV. Local �ow quantities extrapolated with four grids.

Variable x=0; y=1:1h x= h; y=0:1h x=4h; y=0:1h

U 6.629E-01 −1.953E-01 −1.439E-01
Uncertainty U 3.5E-03 4.6E-04 1.9E-02
Observed p 1.96 3.14 3.37
V 2.176E-02 1.435E-02 −9.316E-03
Uncertainty V 1.3E-01 6.3E-02 2.7E-02
Observed p 3.21 3.05 3.17
Cp −1.654E-01 −2.421E-01 −1.196E-01
Uncertainty Cp 5.0E-02 2.3E-03 2.4E-02
Observed p 1.60 3.11 2.59
�t 1.440E-03 1.193E-03 2.177E-03
Uncertainty �t 1.2E-03 2.2E-03 4.1E-03
Observed p 3.18 3.18 3.18

Reattachment point: 6.215, uncertainty: 4.4E-2, observed p: 0.89.

Table V. Integral quantities extrapolated with four grids.

Flow quantity Predicted Uncertainty Observed p

Friction resistance bottom wall (N) 2.641E-02 2.0E-03 3.18
Friction resistance top wall (N) 4.883E-02 1.6E-04 3.18
Pressure resistance bottom wall (N) 1.115E-01 5.1E-03 3.12

We also see that some of the variables seem to indicate ‘apparent’ divergence as the grid
is re�ned (see e.g. Figure 2(b) and (c)), but one has to be cautious to classify these results
as ‘divergent’ for two reasons: (1) in some cases the changes over the span of the scales
depicted in the graphs is relatively small, for example, considering the extrapolated value of
the reattachment length (Figure 2(a)) be ca. 6.1, there is only 5% error in the �nest grid
solution; (2) the apparent order of convergence can be p¡1:0, in which case the derivative
as h→0 will tend to in�nity (if error ∼ chp). One other positive observation is that the least
squares method does not lead to unrealistically low (e.g. 0.1) or high (e.g. 10) observed order
of accuracy.

Extrapolation with methods using triplets

The quantities extrapolated with power law, AES, cubic spline, and polynomial methods (see
Appendix A for explanation of these methods) are compared to those calculated with the
least squares method as shown in Table VI. When non-monotonic convergence happens,
the extrapolated values predicted with the AES method are closest to the results with the
least squares method. The uncertainty indicators GCI, ERECV1, and ERECV2 are compared in
Table VII. It is seen that the uncertainties estimated with GCI and ERECV1 using the least
squares method is much smaller than the ones by ERECV2 using the other methods with
only three grids. With the least squares method, the uncertainties based on the ERECV1 and
ERECV2 are consistent with each other, but much larger than the ones with GCI for most
cases, which implies that the safety factor of 1.25 in GCI calculation may be too small to
represent the uncertainty induced by the scatter of the data. The ERECV1 calculated with four
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Table VI. Extrapolated quantities with di�erent methods.

Least squares Least squares Power Cubic
(7 grids) (4 grids) law AES spline Polynomial

U 6.619E-01 6.629E-01 6.883E-01 6.586E-01 6.771E-01 6.837E-01
x=0 V 2.208E-02 2.176E-02 1.231E-02 2.040E-02 1.533E-02 3.777E-03
y=1:1 Cp −1.727E-01 −1.654E-01 −2.047E-01 −1.515E-01 −1.857E-01 −1.982E-01

�t 1.439E-03 1.440E-03 1.419E-03 1.439E-03 1.428E-03 1.420E-03
U −1.952E-01 −1.953E-01 −1.758E-01 −1.965E-01 −1.840E-01 −1.915E-01

x=1 V 1.426E-02 1.435E-02 2.301E-02 1.453E-02 1.977E-02 2.231E-02
y=0:1 Cp −2.421E-01 −2.421E-01 −2.273E-01 −2.426E-01 −2.333E-01 −2.352E-01

�t 1.192E-03 1.193E-03 1.065E-03 1.203E-03 1.119E-03 1.174E-03
U −1.442E-01 −1.439E-01 −1.379E-01 −1.424E-01 −1.393E-01 −1.265E-01

x=4 V −9.289E-03 −9.316E-03 −1.193E-02 −9.345E-03 −1.094E-02 −1.165E-02
y=0:1 Cp −1.164E-01 −1.196E-01 −1.001E-01 −1.187E-01 −1.071E-01 −9.552E-02

�t 2.177E-03 2.177E-03 2.320E-03 2.176E-03 2.263E-03 2.275E-03
f(south) 2.640E-02 2.641E-02 2.750E-02 2.638E-02 2.706E-02 2.704E-02
p(south) 1.115E-01 1.115E-01 9.967E-02 1.118E-01 1.044E-01 1.048E-01
f(north) 4.882E-02 4.883E-02 4.865E-02 4.884E-02 4.873E-02 4.883E-02

Reattachment 6.203E+00 6.215E+00 5.992E+00 6.476E+00 6.177E+00 6.054E+00
Separation 8.988E-01 8.936E-01 1.039E+00 8.018E-01 9.470E-01 9.869E-01

Non-monotonic convergence occurs when re�ning the grids.

Table VII. Uncertainty of quantities found by extrapolation in Table VI.

Least Linear Power Cubic
square extrapolation law AES spline Polynomial

GCI ERECV1 ERECV1 ERE
(7grids) (7 grids) (4 grids) (2 grids) ERECV2 ERECV2 ERECV2 ERECV2

U 1.7E-03 3.4E-03 5.2E-03 3.0E-02 6.0E-02 1.5E-02 2.5E-02 3.9E-02
x=0 V 1.5E-01 1.6E-01 1.5E-01 5.2E-01 9.4E-01 1.0E-01 8.1E-01 5.0E+00
y=1:1 Cp 1.1E-01 9.9E-02 5.9E-02 1.5E-01 3.4E-01 1.4E-01 1.8E-01 2.3E-01

�t 3.9E-04 4.5E-03 3.8E-03 8.1E-03 3.2E-02 1.3E-02 4.0E-02 5.9E-02
U 1.5E-03 5.1E-03 4.8E-03 4.6E-02 1.8E-01 4.7E-02 7.4E-02 7.4E-02

x=1 V 7.1E-02 1.0E-01 1.0E-01 2.8E-01 5.2E-01 1.9E-01 2.6E-01 3.6E-01
y=0:1 Cp 2.3E-03 4.7E-03 5.2E-03 3.3E-02 9.7E-02 2.4E-02 3.7E-02 5.0E-02

�t 3.3E-03 6.8E-03 6.3E-03 5.3E-02 1.9E-01 5.0E-02 9.0E-02 8.0E-02
U 2.2E-02 2.4E-02 2.3E-02 6.1E-02 6.8E-02 1.7E-02 5.8E-02 1.6E-01

x=4 V 3.1E-02 4.6E-02 4.6E-02 1.5E-01 3.1E-01 9.1E-02 1.4E-01 2.0E-01
y=0:1 Cp 9.7E-03 2.0E-02 3.5E-02 1.4E-01 2.7E-01 4.2E-02 1.3E-01 2.3E-01

�t 4.3E-03 7.6E-03 8.1E-03 3.2E-02 9.1E-02 2.6E-02 4.1E-02 5.7E-02
f(south) 2.1E-03 4.1E-03 4.3E-03 2.2E-02 5.9E-02 1.6E-02 2.0E-02 3.3E-02
p(south) 5.6E-03 1.0E-02 1.1E-02 6.2E-02 1.8E-01 4.1E-02 5.7E-02 9.2E-02
f(north) 2.0E-04 2.7E-04 2.4E-04 1.9E-03 5.7E-03 1.6E-03 3.8E-03 2.8E-03

Reattachment 4.6E-02 4.0E-02 3.9E-02 5.0E-02 1.1E-01 2.5E-02 4.7E-02 7.1E-02
Separation 1.3E-01 9.7E-02 9.3E-02 1.5E-01 3.3E-01 1.0E-01 1.4E-01 2.1E-01

Non-monotonic convergence occurs when re�ning the grids.
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Figure 4. Normalized GCI and ERECV with di�erent methods and di�erent cases.

Figure 5. Extrapolated streamwise velocity pro�le using power law with di�erent
ways of utilizing the power p.

grids are larger than the one with seven grids for most cases. The GCI, ERECV1, and ERECV2
uncertainty measures normalized by the maximum in each row of Table VII are then plotted
in Figure 4. Among all the methods applied with triplets, the uncertainty associated with the
power law method seems to be much larger than the others and it can be discarded as an
outlier. ERECV1 with the least squares method has the same trend as GCI. ERECV2 with AES
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Figure 6. Comparison of the extrapolated streamwise velocity pro�le at x=H =1 with di�erent methods.

and cubic spline method show similar trends. In most cases, GCI yields the least uncertainty
level. It remains to be seen which of these represent the unknown ‘reality’. The ERECV1 based
on the extrapolated value calculated using the least squares method with four grids leads to a
much smaller uncertainty than the one that used the linear extrapolation with two �nest grids.
This is to be expected as �rst-order approximation should lead to larger uncertainty and can
be used if a degree of conservatism is desired.
When reporting results from a CFD application it is usually desirable to present calcu-

lated �eld variables with error bars in terms of pro�les at certain locations in parallel with
experimental results. Figures 5 and 6 depict the normalized error in the streamwise velocity
component at x=H =1 as a function of vertical distance y=H . It is seen that extrapolation
using power law is problematic, especially in the region where non-monotonic convergence
is present. When an average value is used for the observed order i.e. pave =

∑N
k=1 pk=N , N

being the number of data points, the results obtained from power law are in concert with the
other methods (see Figure 5) where the calculation of p is not an issue. We suspect that the
‘reality’ is somewhere among the four cases shown in Figure 5. But it remains to be seen
which one of these results in Figure 5 indeed represents the ‘truth’. This can be clari�ed by
testing these methods against a benchmark with an analytical solution say obtained by the
method of manufactured solutions [3]. This is a topic for future study.
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Results with no interpolation

In order to eliminate the doubts about interpolation errors, the separation and reattachment
lengths calculated with doubling rectangular grids as shown in Table VIII. In this case, the
maximum y+ for the coarsest grid at the south wall is about 25. Again, a non-monotonic
convergence is observed for the reattachment length calculated with rectangular grids. The
extrapolated quantities and coe�cients of variation are listed in Table IX. For the reattachment
length, the uncertainty estimated with the least squares method is the smallest, and for the
separation point, the AES method exhibits the smallest uncertainty. The uncertainty in the
separation point is large (25–75%), that in the reattachment point is relatively small being in
the range of 2–10%.
Comparison of Tables VII and IX show that the extrapolated reattachment length is in

general smaller (by about 7%) when the rectangular grids are used with grid
doubling.
The streamwise velocity component at (1:01; 0:125) with di�erent grids are shown in

Table X. The velocities calculated with the rectangular grids and with no interpolation are
shown on the left two columns. On the right, the velocities computed with the non-rectangular
grids and with the bilinear interpolation method are shown. The extrapolated values using the
least squares method are shown in Table XI. The extrapolated velocity with rectangular grids
is somewhat di�erent from the ones with non-rectangular grid. The numerical uncertainty
(GCI and ERECV1) calculated with the rectangular grids are quite smaller than the ones with
the non-rectangular grids. The calculated apparent order of accuracy, p, with rectangular grids
is closer to the theoretical order used in this study.

Table VIII. Quantities calculated with Cartesian grids
without interpolation.

61 ∗ 61 121 ∗ 121 241 ∗ 241 481 ∗ 481
Separation point 0.0605 0.3143 0.7174 0.8026
Reattachment point 5.5277 5.7498 5.6752 5.8353

Table IX. Extrapolated quantities and coe�cients of variation
(values in parenthesis are from Tables VI and VII).

Separation point Reattachment point

Mean ERECV1=ERECV2 Mean ERECV1=ERECV2

1.19 3.6E-01 5.77 1.8E-02
Least squares (0.89) (9.3E-02) (6.22) (3.9E-02)
Power law 1.39 7.5E-01 5.82 1.0E-01
AES 0.73 2.3E-01 5.75 3.6E-02
Cubic spline 1.00 3.5E-01 5.80 5.6E-02
Polynomial 1.06 5.1E-01 5.80 9.0E-02

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1015–1031



ASSESSMENT OF NUMERICAL UNCERTAINTY 1027

Table X. Streamwise velocity at (1:01; 0:125) calculated with di�erent grids.

Rectangular Velocity with no Non-rectangular Velocity with
grids interpolation grids interpolation

61 ∗ 61 −2.0340E-01 101*101 −2.0360E-01
121 ∗ 121 −1.9132E-01 121*121 −1.9647E-01
241 ∗ 241 −1.8979E-01 141*141 −1.9210E-01
481 ∗ 481 −1.8865E-01 161*161 −1.8916E-01

181*181 −1.8724E-01
201*201 −1.8593E-01
241*241 −1.8433E-01

Table XI. Extrapolated streamwise velocity at
(1:01; 0:125) with the least squares method.

Non-rectangular Rectangular

7 grids 4 grids 4 grids

U −0.1840 −0.1842 −0.1887
GCI 2.0E-03 1.0E-03 2.0E-04
p 3.004 3.146 2.272
ERECV1 5.6E-03 5.0E-03 2.0E-03

CONCLUSIONS

This extensive e�ort on analysis of grid convergence and the estimation of numerical un-
certainty has shown that when calculations are repeated on signi�cantly di�erent set of four
grids, the least squares method gave results that seem to be at least consistent among them-
selves. We obtained very similar results using seven grids and four grids, hence four sets of
carefully selected grids (considering physics of the �ow, grid quality and similarity among
others) should be adequate for uncertainty analysis. However, application of least squares re-
gression to a set of deterministic calculations may not be easy to justify. One may argue that
there are many uncontrollable parameters in a typical CFD application (e.g. local �ow regime
and scale variations as the grid re�ned) that may render each simulation essentially a random
outcome. The major problem that arises in application of RE again, seems to be with the cases
that exhibit non-monotonic convergence. In fact, it may be erroneous to assume monotonic
convergence just by observing the behaviour of three or four points. In this regard, it may be
necessary to devise methods which perform well both for monotonic, and monotonic cases.
Some of the methods that are proposed in this study have shown potential to predict the
extrapolated values and the variance for the potentially oscillatory cases without speci�cally
employing the observed order. In particular, the AES method when used with triplets among
four grids may be a good choice to estimate the mean extrapolated values and the variance
in that mean. The ERE method with four grids originally suggested by Celik and Karatekin
[6] when augmented with CV seem to give consistent and similar results as those obtained
with seven grids, and reasonable uncertainty levels, in general.
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APPENDIX A

Least squares method

With the least squares approach, we compute �0(∼= �ext), �, and p by minimizing the
following function:

�(�0; �; p)=

√
n∑
i=1
(�i − �0 − �hpi )2 (A1)

where n is the number of grids available. The minimum of (A1) is found by setting the
derivatives of (A1) with respect to �0, �, and p equal to zero, which leads to a non-linear
system of equations. Solving the non-linear system yields values for �0, �, and p.

Polynomial method

This method uses the �rst few terms in the Taylor expansion of �(h) to approximate �(h).
For instance, assuming the method is �rst-order, we can use the �rst three terms if we have
a set of three grids. That is

�(h)=�(0) + a1h+ a2h2 (A2)

If we have four grids, we can use

�(h)=�(0) + a1h+ a2h2 + a3h3 (A3)

If the scheme is higher order (p¿ 2), this method will mean essentially a curve �t to the
actual error function. For a fourth-order method one has to keep at least four terms, i.e. �ve
sets of calculations are needed.
The extrapolation to the limit approach is recommended to solve the equations formed by

polynomial method. This approach uses the following formula to calculate the extrapolated
solution �(3)(h) for three grids and �(4)(h) for four grids.

�(m)(h)=
�(m−1)(�h)− �m�(m−1)(h)

1− �m ; m=1; 2; : : : (A4)

It is easy to tabulate the sequential steps of the calculation procedure and to add more
points later.

Power law method

We use the power law method proposed by Celik and Karatekin [6] for three grids. The idea
follows

�(0)− �(h1) = chp1 (A5)

�(0)− �(h2) = sign
(
	32
	21

)
chp2 (A6)

�(0)− �(h3) = chp3 (A7)
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where 	32=	32 = (�(h3)− �(h2))=(�(h2)− �(h1)) the sign of which is positive for monotonic
convergence and negative for non-monotonic convergence. There are three unknowns, �(0),
c, and p. We can implement the same iterative method to solve (A5)–(A7) as done by Celik
and Karatekin [6].
For four grids, we can apply

�(hi)− �(0)= a1hpi + a2hp+1i ; i=1; 2; 3; 4 (A8)

Non-monotonic convergence is facilitated if a1 and a2 are of opposite sign. It should be
noted that for some cases there is no solution to Equation (A8). Those cases will be counted
as unsuccessful outcomes.

Cubic spline method

The well known natural cubic splines curve �tting technique is used to create the cubic splines
between three points or four points. �(0) can be found by extrapolating the curve for the
interval closest to h=0.

AES method

Still using Taylor series expansion for �(h) and substituting �h for h, we have

�(�h)=�(0) + a1�h+ a2(�h)2 + a3(�h)3 + · · · (A9a)

The true error Et is given by

Et(�; h)≡�(�h)− �(0)=
∞∑
k=1
ak�khk (A9b)

and the approximate error Ea

Ea(�; h)≡�(�h)− �(h) (A10)

where Et(�; h) is the true error and Ea(�; h) is the approximate error which presents the
di�erence of the subsequent results with the �ne grid and the coarse grid. So we have

Ea(�; h)=
∞∑
k=1
ak(�k − 1)hk (A11)

Dividing (A9a) and (A9b) by (A11) and moving Ea(�; h) to the right-hand side yields

Et(�; h)=
1

1− (∑ akhk=
∑
ak�khk)

Ea(�; h) (A12)

letting ∑
akhk∑
ak�khk

= b0 + b1h+ b2h2 (A13)
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and expanding the l.h.s. of the above equation and comparing it with the r.h.s. gives

b0 =
1
�
; b1 =

(
1− �
�

)
a2
a1

b2 =
(
1− �2
�

)
a3
a1

− (1− �)
(
a2
a1

)2 (A14)

Now Equation (A12) can be rewritten as

Et(�; h)=
1

1− (b0 + b1h+ b2h2)Ea(�; h) (A15)

In order to calculate b0, b1 and b2, we need to calculate a1, a2 and a3 �rst. It is seen from
Equation (A11) that

ak =
E(k)a (�; 0)
k!(�k − 1) ; k=1; 2; 3 (A16)

E(k) is the kth derivative of E. Assuming that we have three grids and the solutions as
(h1; �(h1)), (h2; �(h2)) and (h3; �(h3)) with h3 = �h2 = �2h1. And noting that Ea(�; 0)≡ 0 leads
to 3 points as (h1; Ea(�; h1)), (h2; Ea(�; h2)) and (0; Ea(�; 0)) which involves the approximate
error instead of the numerical solution �̃ itself. Using the information on Ea we can interpolate
with cubic splines using two endslopes given by E′

a(�; 0)∼=0 and E′
a(�; h1)∼=(Ea(�; h1) −

Ea(�; h2))=(h1−h2). These endslopes are acceptable at h=0 for any scheme with order larger
than 1. For the �rst-order methods, in general, the slope at h=0 is not zero. We could still
obtain excellent results using the zero slope assumption for the �rst-order methods as we
demonstrate in the assessment part of this paper. Once we have E(k)a (�; 0), we can calculate
ak from Equation (A16). As one might notice, b1 is singular at h=0 if E′

a(�; 0)=0. In order
to avoid this singularity, E′

a(�; 	) can be used to represent E
′
a(�; 0) by using �nite di�erencing

at h= 	 where 	 is a small value. Having obtained b0, b1 and b2, we can calculate �(0) from
Equation (A15) together with de�nition (A9a), (A9b) and (A10).
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